Part Number Hot Search : 
AAMDB LCX028B 045CT P6KE6 MBT22 AAT1154 4752A TK10417M
Product Description
Full Text Search
 

To Download TLV2262MJGB Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? slos186c ? february 1997 ? revised august 2006 1 post office box 655303 ? dallas, texas 75265  output swing includes both supply rails  low noise . . . 12 nv/ hz typ at f = 1 khz  low input bias current ...1 pa typ  fully specified for both single-supply and split-supply operation  low power . . . 500 a max  common-mode input voltage range includes negative rail  low input offset voltage 950 v max at t a = 25 c (tlv226xa)  wide supply voltage range 2.7 v to 8 v  macromodel included  available in q-temp automotive highrel automotive applications configuration control / print support qualification to automotive standards description the tlv2262 and tlv2264 are dual and quad low voltage operational amplifiers from texas instru- ments. both devices exhibit rail-to-rail output performance for increased dynamic range in single or split supply applications. the tlv226x family offers a compromise between the micro- power tlv225x and the ac performance of the tlc227x. it has low supply current for battery- powered applications, while still having adequate ac performance for applications that demand it. this family is fully characterized at 3 v and 5 v and is optimized for low-voltage applications. the noise performance has been dramatically im- proved over previous generations of cmos amplifiers. figure 1 depicts the low level of noise voltage for this cmos amplifier, which has only 200 a (typ) of supply current per amplifier. the tlv226x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. because of the micro- power dissipation levels combined with 3-v operation, these devices work well in hand-held monitoring and remote-sensing applications. in addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (adcs). for precision applications, the tlv226xa family is available and has a maximum input offset voltage of 950 v. the tlv2262/4 also makes great upgrades to the tlv2332/4 in standard designs. they offer increased output dynamic range, lower noise voltage and lower input offset voltage. this enhanced feature set allows them to be used in a wider range of applications. for applications that require higher output drive and wider input voltage range, see the tlv2432 and tlv2442 devices. if your design requires single amplifiers, please see the tlv2211/21/31 family. these devices are single rail-to-rail operational amplifiers in the sot-23 package. their small size and low power consumption make them ideal for high density, battery-powered equipment. copyright ? 1997?2006, t exas instruments incorporated please be aware that an important notice concerning avail ability, standard warranty, and use in critical applications of texas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. advanced lincmos is a trademark of texas instruments. ? high-level output voltage ? v high-level output voltage vs high-level output current a figure 1 2 1 0.5 0 0 500 1000 3 3.5 4 1500 200 0 2.5 1.5 t a = ? 55 c v dd = 3 v t a = 85 c t a = ? 40 c t a = 125 c t a = 25 c
? slos186c ? february 1997 ? revised august 2006 2 post office box 655303 ? dallas, texas 75265 tlv2262 available options packaged devices t a v io max at 25 c small outline (d) chip carrier (fk) ceramic dip (jg) plastic dip (p) tssop (pw) ceramic flatpack (u) 0 c to 70 c 2.5 mv tlv2262cd ? ? tlv2262cp tlv2262cpwle ? ?40 c to 125 c 950 v tlv2262aid ? ? tlv2262aip tlv2262aipwle ? ?40 c to 125 c 950 v 2.5 mv tlv2262aid tlv2262id ? ? ? ? tlv2262aip tlv2262ip tlv2262aipwle ? ? ? ?40 c to 125 c 950 v tlv2262aqd ? ? ? ? ? ?40 c to 125 c 950 v 2.5 mv tlv2262aqd tlv2262qd ? ? ? ? ? ? ? ? ? ? ?55 c to 125 c 950 v 2.5 mv ? ? tlv2262amfk tlv2262mfk tlv2262amjg tlv2262mjg ? ? ? ? tlv2262amu tlv2262mu ? the d packages are available taped and reeled. add r suffix to device type (e.g., tlv2262cdr). ? the pw package is available only left-end taped and reeled. chips are tested at 25 c. ? for the most current package and ordering information see the package option addendum at the end of this document, or see the t i web site at www.ti.com. tlv2264 available options packaged devices t a v io max at 25 c small outline (d) chip carrier (fk) ceramic dip (j) plastic dip (n) tssop (pw) ceramic flatpack (w) ?40 c to 950 v tlv2264aid ? ? tlv2264ain tlv2264aipwle ? ?40 c to 125 c 950 v 2.5 mv tlv2264aid tlv2264id ? ? ? ? tlv2264ain tlv2264in tlv2264aipwle ? ? ? ?40 c to 950 v tlv2264aqd ? ? ? ? ? ?40 c to 125 c 950 v 2.5 mv tlv2264aqd tlv2264qd ? ? ? ? ? ? ? ? ? ? ?55 c to 125 c 950 v 2.5 mv ? ? tlv2264amfk tlv2264mfk tlv2264amj tlv2264mj ? ? ? ? tlv2264amw tlv2264mw ? the d packages are available taped and reeled. add r suffix to device type (e.g., tlv2262idr). ? the pw package is available only left-end taped and reeled. chips are tested at 25 c. ? for the most current package and ordering information see the package option addendum at the end of this document, or see the t i web site at www.ti.com.
? slos186c ? february 1997 ? revised august 2006 3 post office box 655303 ? dallas, texas 75265 tlv2262c, tlv2262ac tlv2262i, tlv2262ai tlv2262q, tlv2262aq d, p, or pw package (top view) 1 2 3 4 8 7 6 5 1out 1in ? 1in + v dd ? /gnd v dd + 2out 2in ? 2in + nc v cc + 2out 2in ? 2in + nc 1out 1in ? 1in + v cc ? /gnd 1 2 3 4 5 10 9 8 7 6 1 2 3 4 8 7 6 5 1out 1in ? 1in + v dd ? /gnd v dd + 2out 2in ? 2in + 3 2 1 20 19 910111213 4 5 6 7 8 18 17 16 15 14 nc 2out nc 2in ? nc nc 1in ? nc 1in + nc nc 1out nc 2in+ nc nc nc nc v dd+ v dd? tlv2262m, tlv2262am fk package (top view) /gnd 1 2 3 4 5 6 7 14 13 12 11 10 9 8 1out 1in ? 1in + v dd + 2in + 2in ? 2out 4out 4in ? 4in + v dd ? / gnd 3in + 3in ? 3out 3212019 910111213 4 5 6 7 8 18 17 16 15 14 4in + nc v cc ? /gnd nc 3in + 1in + nc v cc + nc 2in + 1in ? 1out nc 3out 3in ? 4out 4in ? 2in ? 2out nc 1 2 3 4 5 6 7 14 13 12 11 10 9 8 1out 1in ? 1in + v dd + 2in + 2in ? 2out 4out 4in ? 4in + v dd ? / gnd 3in + 3in ? 3out tlv2264i, tlv2264ai tlv2264q, tlv2264aq d, n, or pw package (top view) tlv2264m, tlv2264am j or w package (top view) tlv2264m, tlv2264am fk package (top view) tlv2662m, tlv2262am u package (top view) tlv2262m, tlv2262am jg package (top view)
template release date: 7?11?94 slos186c ? february 1997 ? revised august 2006 ? 4 post office box 655303 dallas, texas 75265 ? equivalent schematic (each amplifier) q3 q6 q9 q12 q14 q16 q2 q5 q7 q8 q10 q11 d1 q17 q15 q13 q4 q1 r5 c1 v dd + in + in ? r3 r4 r1 r2 out v dd ?/ gnd r6 actual device component count ? component tlv2252 tlv2254 transistors 38 76 resistors 28 54 diodes 9 18 capacitors 3 6 ? includes both amplifiers and all esd, bias, and trim circuitry
? slos186c ? february 1997 ? revised august 2006 5 post office box 655303 ? dallas, texas 75265 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ? supply voltage, v dd (see note 1) 16 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . differential input voltage, v id (see note 2) v dd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input voltage range, v i (any input, see note 1) v dd ? ?0.3 v to v dd+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input current, i i (each input) 5 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output current, i o 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total current into v dd + 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total current out of v dd ? 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . duration of short-circuit current (at or below) 25 c (see note 3) unlimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . continuous total power dissipation see dissipation rating table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . operating free-air temperature range, t a : i suffix ?40 c to 125 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . q suffix ?40 c to 125 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m suffix ?55 c to 125 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . storage temperature range, t stg ?65 c to 150 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress ratings only, a nd functional operation of the device at these or any other conditions beyond those indicated under ?recommended operating conditi ons? is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. notes: 1. all voltage values, except differential voltages, are with respect to v dd ? . 2. differential voltages are at the noninverting input with respect to the inverting input. excessive current flows when input i s brought below v dd ? ? 0.3 v. 3. the output may be shorted to either supply. temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. dissipation rating table package t a 25 c derating factor t a = 85 c t a = 125 c package t a 25 c power rating derating factor above t a = 25 c t a = 85 c power rating t a = 125 c power rating d?8 725 mw 5.8 mw/ c 377 mw 145 mw d?14 950 mw 7.6 mw/ c 494 mw 190 mw fk 1375 mw 11.0 mw/ c 715 mw 275 mw j 1375 mw 11.0 mw/ c 715 mw 275 mw jg 1050 mw 8.4 mw/ c ? 210 mw n 1150 mw 9.2 mw/ c 598 mw ? p 1000 mw 8.0 mw/ c 520 mw 200 mw pw?8 525 mw 4.2 mw/ c 273 mw 105 mw pw?14 700 mw 5.6 mw/ c 364 mw ? u 700 mw 5.5 mw/ c ? 150 mw w 700 mw 5.5 mw/ c 370 mw 150 mw recommended operating conditions i suffix q suffix m suffix unit min max min max min max unit supply voltage, v dd 2.7 8 2.7 8 2.7 8 v input voltage range, v i v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v common-mode input voltage, v ic v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v operating free-air temperature, t a ?40 125 ?40 125 ?55 125 c note 1: all voltage values, except differential voltages, are with respect to v dd ? .
? slos186c ? february 1997 ? revised august 2006 6 post office box 655303 ? dallas, texas 75265 tlv2262i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2262i tlv2262ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient of input offset voltage 25 c to 85 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 1.5 v, v ic = 0, v = 0, r = 50 ? c 0.003 0.003 v/mo dd ic v o = 0, r s = 50 ? 25 c 0.5 60 0.5 60 i io input offset current os 85 c 150 150 pa i io input offset current full range 800 800 pa 25 c 1 60 1 60 i ib input bias current 85 c 150 150 pa i ib input bias current full range 800 800 pa v icr common-mode input voltage range r s = 50 ? | v io | 5 mv 25 c 0 to 2 ?0.3 to 2.2 0 to 2 ?0.3 to 2.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv full range 0 to 1.7 0 to 1.7 v i oh = ? 20 a 25 c 2.99 2.99 high-level output i oh = ? 100 a 25 c 2.85 2.85 v oh high-level output voltage i oh = ? 100 a full range 2.825 2.825 v v oh voltage i oh = ? 400 a 25 c 2.7 2.7 v i oh = ? 400 a full range 2.65 2.65 v ic = 1.5 v, i ol = 50 a 25 c 10 10 low-level output v ic = 1.5 v, i ol = 500 a 25 c 100 100 v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 150 150 mv v ol voltage v ic = 1.5 v, i ol = 1 a 25 c 200 200 mv v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal differential v ic = 1.5 v, r l = 50 k ? ? 25 c 60 100 60 100 a vd large-signal differential voltage amplification v ic = 1.5 v, v o = 1 v to 2 v r l = 50 k ? ? full range 30 30 v/mv a vd voltage amplification v o = 1 v to 2 v r l = 1 m ? ? 25 c 100 100 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 270 270 ? cmrr common-mode rejection ratio v ic = 0 to 1.7 v, v = 1.5 v, r = 50 25 c 65 75 65 77 db cmrr common-mode rejection ratio v ic = 0 to 1.7 v, v o = 1.5 v, r s = 50 ? full range 60 60 db k svr supply voltage rejection v dd = 2.7 v to 8 v, 25 c 80 95 80 100 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 2.7 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 7 post office box 655303 ? dallas, texas 75265 tlv2262i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2262i tlv2262ai unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 1.5 v, no load 25 c 400 500 400 500 a i dd supply current v o = 1.5 v, no load full range 500 500 a ? full range is ? 40 c to 125 c. tlv2262i operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2262i tlv2262ai unit parameter test conditions t a ? min typ max min typ max unit v o = 1.1 v to 1.9 v, r l = 50 k ? ? , 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 1.1 v to 1.9 v, c l = 100 pf ? r l = 50 k ? ? , full 0.3 0.3 v/ s sr slew rate at unity gain c l = 100 pf ? full range 0.3 0.3 v/ s v n equivalent input noise f = 10 hz 25 c 43 43 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1 1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.03% 0.03% thd + n total harmonic distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.05% 0.05% gain-bandwidth f = 1 khz, r l = 50 k ? ? , 25 c 0.67 0.67 mhz gain-bandwidth product f = 1 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.67 0.67 mhz b om maximum output-swing v o(pp) = 1 v, ? a v = 1, ? 25 c 395 395 khz b om output-swing bandwidth v o(pp) = 1 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 395 395 khz a v = ? 1, to 0.1% 5.6 5.6 t s settling time a v = ? 1, step = 1 v to 2 v, ? to 0.1% 25 c 5.6 5.6 s t s settling time step = 1 v to 2 v, r l = 50 k ? ? , c = 100 pf ? to 0.01% 25 c 12.5 12.5 s r l = 50 k ? ? , c l = 100 pf ? to 0.01% 12.5 12.5 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 55 55 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c. ? referenced to 1.5 v
? slos186c ? february 1997 ? revised august 2006 8 post office box 655303 ? dallas, texas 75265 tlv2262i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2262i tlv2262ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient 25 c 2 2 v/ c  vio temperature coefficient of input offset voltage 25 c to 85 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v, v ic = 0, v = 0, r = 50 ? c 0.003 0.003 v/mo dd ic v o = 0, r s = 50 ? 25 c 0.5 60 0.5 60 i io input offset current os 85 c 150 150 pa i io input offset current full range 800 800 pa 25 c 1 60 1 60 i ib input bias current 85 c 150 150 pa i ib input bias current full range 800 800 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input | v io | 5 mv, r s = 50 ? | v io | 5 mv, r s = 50 ? 0 0 v voltage range full range 0 to 0 to full range to 3.5 to 3.5 i oh = ? 20 a 25 c 4.99 4.99 i oh = ? 100 a 25 c 4.85 4.94 4.85 4.94 v oh high-level output voltage i oh = ? 100 a full range 4.82 4.82 v v oh high-level output voltage i oh = ? 400 a 25 c 4.7 4.85 4.7 4.85 v i oh = ? 400 a full range 4.6 4.6 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol low-level output voltage v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal differential v ic = 2.5 v, r l = 50 k ? ? 25 c 80 170 80 170 a vd large-signal differential voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 50 k ? ? full range 55 55 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 550 550 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 240 240 ? cmrr common-mode rejection v ic = 0 to 2.7 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, r s = 50 ? full range 70 70 db k svr supply voltage rejection v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 9 post office box 655303 ? dallas, texas 75265 tlv2262i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2262i tlv2262ai unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 2.5 v, no load 25 c 400 500 400 500 a i dd supply current v o = 2.5 v, no load full range 500 500 a ? full range is ? 40 c to 125 c. tlv2262i operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2262i tlv2262ai unit parameter test conditions t a ? min typ max min typ max unit slew rate at unity v o = 1.5 v to 3.5 v, r l = 50 k ? ? , 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 1.5 v to 3.5 v, c l = 100 pf ? r l = 50 k ? ? , full 0.3 0.3 v/ s sr gain c l = 100 pf ? full range 0.3 0.3 v/ s v n equivalent input f = 10 hz 25 c 40 40 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.3 1.3 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.017% 0.017% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.03% 0.03% gain-bandwidth f = 50 khz, r l = 50 k ? ? , 25 c 0.71 0.71 mhz gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.71 0.71 mhz b om maximum output- v o(pp) = 2 v, ? a v = 1, ? 25 c 185 185 khz b om maximum output- swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 185 185 khz a v = ? 1, to 0.1% 6.4 6.4 t s settling time a v = ? 1, step = 0.5 v to 2.5 v, ? to 0.1% 25 c 6.4 6.4 s t s settling time step = 0.5 v to 2.5 v, r l = 50 k ? ? , ? to 0.01% 25 c 14.1 14.1 s r l = 50 k ? ? , c l = 100 pf ? to 0.01% 14.1 14.1 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 56 56 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v
? slos186c ? february 1997 ? revised august 2006 10 post office box 655303 ? dallas, texas 75265 tlv2264i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2264i tlv2264ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient 25 c 2 2 v/ c  vio temperature coefficient of input offset voltage 25 c to 85 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 1.5 v, v ic = 0, v = 0, 25 c 0.003 0.003 v/mo v ic = 0, v o = 0, r s = 50 ? c 0.5 60 0.5 60 i io input offset current o r s = 50 ? 85 c 150 150 pa i io input offset current full range 800 800 pa 25 c 1 60 1 60 i ib input bias current 85 c 150 150 pa i ib input bias current full range 800 800 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input r s = 50 ? | v io | 5 mv 25 c to 2 to 2.2 to 2 to 2.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv 0 0 v voltage range full range 0 to 0 to full range to 1.7 to 1.7 i oh = ? 20 a 25 c 2.99 2.99 high-level output i oh = ? 100 a 25 c 2.85 2.85 v oh high-level output voltage i oh = ? 100 a full range 2.825 2.825 v v oh voltage i oh = ? 400 a 25 c 2.7 2.7 v i oh = ? 400 a full range 2.65 2.65 v ic = 1.5 v, i ol = 50 a 25 c 10 10 v ic = 1.5 v, i ol = 500 a 25 c 100 100 v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 150 150 mv v ol low-level output voltage v ic = 1.5 v, i ol = 1 a 25 c 200 200 mv v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal differential v = 1.5 v, r l = 50 k ? ? 25 c 60 100 60 100 a vd large-signal differential voltage amplification v ic = 1.5 v, v o = 1 to 2 v r l = 50 k ? ? full range 30 30 v/mv a vd voltage amplification ic v o = 1 to 2 v r l = 1 m ? ? 25 c 100 100 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 270 270 ? cmrr common-mode v ic = 0 to 1.7 v, 25 c 65 75 65 77 db cmrr common-mode rejection ratio v o = 1.5 v, r s = 50 ? full range 60 60 db k svr supply voltage rejection ratio ( v/ v) v dd = 2.7 v to 8 v, 25 c 80 95 80 100 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 11 post office box 655303 ? dallas, texas 75265 tlv2264i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2264i tlv2264ai unit parameter test conditions t a ? min typ max min typ max unit i dd supply current (four amplifiers) v o = 1.5 v, no load 25 c 0.8 1 0.8 1 ma i dd supply current (four amplifiers) v o = 1.5 v, no load full range 1 1 ma ? full range is ? 40 c to 125 c. tlv2264i operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2264i tlv2264ai unit parameter test conditions t a ? min typ max min typ max unit 25 c 0.35 0.55 0.35 0.55 slew rate at unity v o = 0.7 v to 1.7 v, r l = 50 k ? ? , 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 0.7 v to 1.7 v , c l = 100 pf ? r l = 50 k ? ? , full 0.3 0.3 v/ s sr gain c l = 100 pf ? full range 0.3 0.3 v/ s v n equivalent input f = 10 hz 25 c 43 43 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1 1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v , f = 20 khz, a v = 1 25 c 0.03% 0.03% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.05% 0.05% gain-bandwidth f = 1 khz, r l = 50 k ? ? , 25 c 0.67 0.67 mhz gain-bandwidth product f = 1 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.67 0.67 mhz b om maximum output-swing v o(pp) = 1 v, ?, a v = 1, ? 25 c 395 395 khz b om output-swing bandwidth v o(pp) = 1 v, r l = 50 k ? ?, a v = 1, c l = 100 pf ? 25 c 395 395 khz a v = ?1, to 0.1% 5.6 5.6 t s settling time a v = ?1, step = 1 v to 2 v, ?, to 0.1% 25 c 5.6 5.6 s t s settling time step = 1 v to 2 v, r l = 50 k ? ?, c = 100 pf ? to 0.01% 25 c 12.5 12.5 s r l = 50 k ? ?, c l = 100 pf ? to 0.01% 12.5 12.5 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 55 55 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c. ? referenced to 1.5 v
? slos186c ? february 1997 ? revised august 2006 12 post office box 655303 ? dallas, texas 75265 tlv2264i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2264i tlv2264ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient 25 c 2 2 v/ c  vio temperature coefficient of input offset voltage 25 c to 85 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v, v ic = 0, v o = 0, 25 c 0.003 0.003 v/mo v ic = 0, v o = 0, r s = 50 ? c 0.5 60 0.5 60 i io input offset current r s = 50 ? 85 c 150 150 pa i io input offset current full range 800 800 pa 25 c 1 60 1 60 i ib input bias current 85 c 150 150 pa i ib input bias current full range 800 800 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input | v io | 5 mv, r s = 50 ? | v io | 5 mv, r s = 50 ? 0 0 v voltage range full range 0 to 0 to full range to 3.5 to 3.5 i oh = ? 20 a 25 c 4.99 4.99 high-level output i oh = ? 100 a 25 c 4.85 4.94 4.85 4.94 v oh high-level output voltage i oh = ? 100 a full range 4.82 4.82 v v oh voltage i oh = ? 400 a 25 c 4.7 4.85 4.7 4.85 v i oh = ? 400 a full range 4.6 4.6 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 low-level output v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol voltage v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal differential v ic = 2.5 v, r l = 50 k ? ? 25 c 80 170 80 170 a vd large-signal differential voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 50 k ? ? full range 55 55 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 550 550 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 240 240 ? cmrr common-mode rejection v ic = 0 to 2.7 v, v o = 2.5 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, r s = 50 ? full range 70 70 db k svr supply voltage rejection v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 13 post office box 655303 ? dallas, texas 75265 tlv2264i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2264i tlv2264ai unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 2.5 v, no load 25 c 0.8 1 0.8 1 ma i dd supply current (four amplifiers) v o = 2.5 v, no load full range 1 1 ma ? full range is ? 40 c to 125 c. tlv2264i operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2264i tlv2264ai unit parameter test conditions t a ? min typ max min typ max unit 25 c 0.35 0.55 0.35 0.55 slew rate at unity v o = 1.4 v to 2.6 v, r l = 50 k ? ? , 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 1.4 v to 2.6 v, c l = 100 pf ? r l = 50 k ? ? , full 0.3 0.3 v/ s sr gain c l = 100 pf ? full range 0.3 0.3 v/ s v n equivalent input f = 10 hz 25 c 40 40 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.3 1.3 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.017% 0.017% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.03% 0.03% gain-bandwidth f = 50 khz, r l = 50 k ? ? , 25 c 0.71 0.71 mhz gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.71 0.71 mhz b om maximum output- v o(pp) = 2 v, ? a v = 1, ? 25 c 185 185 khz b om maximum output- swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 185 185 khz a v = ? 1, to 0.1% 6.4 6.4 t s settling time a v = ? 1, step = 0.5 v to 2.5 v, ? to 0.1% 25 c 6.4 6.4 s t s settling time step = 0.5 v to 2.5 v, r l = 50 k ? ? , ? to 0.01% 25 c 14.1 14.1 s r l = 50 k ? ? , c l = 100 pf ? to 0.01% 14.1 14.1 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 56 56 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v
? slos186c ? february 1997 ? revised august 2006 14 post office box 655303 ? dallas, texas 75265 tlv2262q and tlv2262m electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2262q, tlv2262m tlv2262aq, tlv2262am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient 25 c 2 2 v/ c  vio temperature coefficient of input offset voltage 25 c to 125 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 1.5 v, v ic = 0, v o = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current os 25 c 0.5 60 0.5 60 pa i io input offset current 125 c 800 800 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 800 800 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input voltage range r s = 50 ? | v io | 5 mv 25 c to 2 to 2.2 to 2 to 2.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv 0 0 v voltage range full range 0 to 0 to full range to 1.7 to 1.7 i oh = ? 20 a 25 c 2.99 2.99 high-level output i oh = ? 100 a 25 c 2.85 2.85 v oh high-level output voltage i oh = ? 100 a full range 2.82 2.82 v v oh voltage i oh = ? 400 a 25 c 2.7 2.7 v i oh = ? 400 a full range 2.55 2.55 v ic = 1.5 v, i ol = 50 a 25 c 10 10 low-level output v ic = 1.5 v, i ol = 500 a 25 c 100 150 100 150 v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 165 165 mv v ol voltage v ic = 1.5 v, i ol = 1 a 25 c 200 300 200 300 mv v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal differential v ic = 1.5 v, r l = 50 k ? ? 25 c 60 100 60 100 a vd large-signal differential voltage amplification v ic = 1.5 v, v o = 1 v to 2 v r l = 50 k ? ? full range 25 25 v/mv a vd voltage amplification v o = 1 v to 2 v r l = 1 m ? ? 25 c 100 100 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 270 270 ? cmrr common-mode rejection ratio v ic = 0 to 1.7 v, v = 1.5 v, r = 50 25 c 65 75 65 77 db cmrr common-mode rejection ratio v ic = 0 to 1.7 v, v o = 1.5 v, r s = 50 ? full range 60 60 db k svr supply voltage rejection ratio ( v/ v) v dd = 2.7 v to 8 v, v = v /2, no load 25 c 80 95 80 100 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 2.7 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 15 post office box 655303 ? dallas, texas 75265 tlv2262q and tlv2262m electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2262q, tlv2262m tlv2262aq, tlv2262am unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 1.5 v, no load 25 c 400 500 400 500 a i dd supply current v o = 1.5 v, no load full range 500 500 a ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. tlv2262q and tlv2262m operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2262q, tlv2262m tlv2262aq, tlv2262am unit parameter test conditions t a ? min typ max min typ max unit v o = 0.5 v to 1.7 v, r l = 50 k ? ? , 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 0.5 v to 1.7 v, c l = 100 pf ? r l = 50 k ? ? , full 0.25 0.25 v/ s sr slew rate at unity gain c l = 100 pf ? full range 0.25 0.25 v/ s v n equivalent input noise f = 10 hz 25 c 43 43 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input noise f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1 1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.03% 0.03% thd + n total harmonic distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.05% 0.05% gain-bandwidth f = 1 khz, r l = 50 k ? ? , 25 c 0.67 0.67 mhz gain-bandwidth product f = 1 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.67 0.67 mhz b om maximum output-swing v o(pp) = 1 v, ? a v = 1, ? 25 c 395 395 khz b om output-swing bandwidth v o(pp) = 1 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 395 395 khz a v = ? 1, to 0.1% 5.6 5.6 t s settling time a v = ? 1, step = 1 v to 2 v, ? to 0.1% 25 c 5.6 5.6 s t s settling time step = 1 v to 2 v, r l = 50 k ? ? , ? to 0.01% 25 c 12.5 12.5 s r l = 50 k ? ? , c l = 100 pf ? to 0.01% 12.5 12.5 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 55 55 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v
? slos186c ? february 1997 ? revised august 2006 16 post office box 655303 ? dallas, texas 75265 tlv2262q and tlv2262m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2262q, tlv2262m tlv2262aq, tlv2262am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient of 25 c 2 2 v/ c  vio temperature coefficient of input offset voltage 25 c to 125 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v, v ic = 0, v o = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current v o = 0, r s = 50 ? c 0.5 60 0.5 60 pa i io input offset current 125 c 800 800 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 800 800 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input | v io | 5 mv, r s = 50 ? | v io | 5 mv, r s = 50 ? 0 0 v voltage range full range 0 to 0 to full range to 3.5 to 3.5 i oh = ? 20 a 25 c 4.99 4.99 i oh = ? 100 a 25 c 4.85 4.94 4.85 4.94 v oh high-level output voltage i oh = ? 100 a full range 4.82 4.82 v v oh high-level output voltage i oh = ? 400 a 25 c 4.7 4.85 4.7 4.85 v i oh = ? 400 a full range 4.5 4.5 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol low-level output voltage v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal differential v ic = 2.5 v, r l = 50 k ? ? 25 c 80 170 80 170 a vd large-signal differential voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 50 k ? ? full range 50 50 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 550 550 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 240 240 ? cmrr common-mode rejection v ic = 0 to 2.7 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, r s = 50 ? full range 70 70 db k svr supply voltage rejection v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 17 post office box 655303 ? dallas, texas 75265 tlv2262q and tlv2262m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2262q, tlv2262m tlv2262aq, tlv2262am unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 2.5 v, no load 25 c 400 500 400 500 a i dd supply current v o = 2.5 v, no load full range 500 500 a ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. tlv2262q and tlv2262m operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2262q, tlv2262m tlv2262aq, tlv2262am unit parameter test conditions t a ? min typ max min typ max unit slew rate at unity v o = 0.5 v to 3.5 v, r l = 50 k ? ? 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 0.5 v to 3.5 v, c l = 100 pf ? r l = 50 k ? ? full 0.25 0.25 v/ s sr gain c l = 100 pf ? full range 0.25 0.25 v/ s v n equivalent input f = 10 hz 25 c 40 40 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.3 1.3 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.017% 0.017% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.03% 0.03% gain-bandwidth f = 50 khz, r l = 50 k ? ? , 25 c 0.71 0.71 mhz gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.71 0.71 mhz b om maximum output-swing v o(pp) = 2 v, ? a v = 1, ? 25 c 185 185 khz b om output-swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 185 185 khz a v = ? 1, to 0.1% 6.4 6.4 t s settling time a v = ? 1, step = 0.5 v to 2.5 v, ? to 0.1% 25 c 6.4 6.4 s t s settling time step = 0.5 v to 2.5 v, r l = 50 k ? ? , ? to 0.01% 25 c 14.1 14.1 s r l = 50 k ? ? , c l = 100 pf ? to 0.01% 14.1 14.1 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 56 56 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v
? slos186c ? february 1997 ? revised august 2006 18 post office box 655303 ? dallas, texas 75265 tlv2264q and tlv2264m electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2264q, tlv2264m tlv2264aq, tlv2264am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient 25 c 2 2 v/ c  vio temperature coefficient of input offset voltage v = 1.5 v, 25 c to 125 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 1.5 v, v ic = 0, v o = 0, r s = 50 ? c 0.003 0.003 v/mo i io input offset current o r s = 50 ? 25 c 0.5 60 0.5 60 pa i io input offset current 125 c 800 800 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 800 800 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input r s = 50 ? | v io | 5 mv 25 c to 2 to 2.2 to 2 to 2.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv 0 0 v voltage range full range 0 to 0 to full range to 1.7 to 1.7 i oh = ? 20 a 25 c 2.99 2.99 high-level output i oh = ? 100 a 25 c 2.85 2.85 v oh high-level output voltage i oh = ? 100 a full range 2.82 2.82 v v oh voltage i oh = ? 400 a 25 c 2.7 2.7 v i oh = ? 400 a full range 2.6 2.6 v ic = 1.5 v, i ol = 50 a 25 c 10 10 low-level output v ic = 1.5 v, i ol = 500 a 25 c 100 150 100 150 v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 150 150 mv v ol voltage v ic = 1.5 v, i ol = 1 a 25 c 200 300 200 300 mv v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal differential v ic = 1.5 v, r l = 50 k ? ? 25 c 60 100 60 100 a vd large-signal differential voltage amplification v ic = 1.5 v, v o = 1 v to 2 v r l = 50 k ? ? full range 25 25 v/mv a vd voltage amplification v o = 1 v to 2 v r l = 1 m ? ? 25 c 100 100 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 270 270 ? cmrr common-mode rejection v ic = 0 to 1.7 v, v o = 1.5 v, 25 c 65 75 65 77 db cmrr common-mode rejection ratio v ic = 0 to 1.7 v, v o = 1.5 v, r s = 50 ? full range 60 60 db k svr supply voltage rejection ratio ( v/ v) v dd = 2.7 v to 8 v, 25 c 80 95 80 100 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 19 post office box 655303 ? dallas, texas 75265 tlv2264q and tlv2264m electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2264q, tlv2264m tlv2264aq, tlv2264am unit parameter test conditions t a ? min typ max min typ max unit i dd supply current (four amplifiers) v o = 1.5 v, no load 25 c 0.8 1 0.8 1 ma i dd supply current (four amplifiers) v o = 1.5 v, no load full range 1 1 ma ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. tlv2264q and tlv2264m operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2264q, tlv2264m tlv2264aq, tlv2264am unit parameter test conditions t a ? min typ max min typ max unit 25 c 0.35 0.55 0.35 0.55 slew rate at unity v o = 0.5 v to 1.7 v, r l = 50 k ? ? , 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 0.5 v to 1.7 v, c l = 100 pf ? r l = 50 k ? ? , full 0.25 0.25 v/ s sr gain c l = 100 pf ? full range 0.25 0.25 v/ s v n equivalent input f = 10 hz 25 c 43 43 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1 1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.03% 0.03% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.05% 0.05% gain-bandwidth f = 1 khz, r l = 50 k ? ? , 25 c 0.67 0.67 mhz gain-bandwidth product f = 1 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.67 0.67 mhz b om maximum output- v o(pp) = 1 v, ? a v = 1, ? 25 c 395 395 khz b om maximum output- swing bandwidth v o(pp) = 1 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 395 395 khz a v = ? 1, to 0.1% 5.6 5.6 t s settling time a v = ? 1, step = 1 v to 2 v, ? to 0.1% 25 c 5.6 5.6 s t s settling time step = 1 v to 2 v, r l = 50 k ? ? , ? to 0.01% 25 c 12.5 12.5 s r l = 50 k ? ? , c l = 100 pf ? to 0.01% 12.5 12.5 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 55 55 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v
? slos186c ? february 1997 ? revised august 2006 20 post office box 655303 ? dallas, texas 75265 tlv2264q and tlv2264m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2264q, tlv2264m tlv2264aq, tlv2264am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 300 2500 300 950 v v io input offset voltage full range 3000 1500 v  vio temperature coefficient of 25 c 2 2 v/ c  vio temperature coefficient of input offset voltage v = 2.5 v, 25 c to 125 c 2 2 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v, v ic = 0, v o = 0, r s = 50 ? c 0.003 0.003 v/mo i io input offset current r s = 50 ? 25 c 0.5 60 0.5 60 pa i io input offset current 125 c 800 800 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 800 800 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input | v io | 5 mv, r s = 50 ? | v io | 5 mv, r s = 50 ? 0 0 v voltage range full range 0 to 0 to full range to 3.5 to 3.5 i oh = ? 20 a 25 c 4.99 4.99 i oh = ? 100 a 25 c 4.85 4.94 4.85 4.94 v oh high-level output voltage i oh = ? 100 a full range 4.82 4.82 v v oh high-level output voltage i oh = ? 400 a 25 c 4.7 4.85 4.7 4.85 v i oh = ? 400 a full range 4.5 4.5 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol low-level output voltage v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal differential v ic = 2.5 v, r l = 50 k ? ? 25 c 80 170 80 170 a vd large-signal differential voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 50 k ? ? full range 50 50 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 550 550 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 100 khz, a v = 10 25 c 240 240 ? cmrr common-mode rejection v ic = 0 to 2.7 v, v o = 2.5 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, r s = 50 ? full range 70 70 db k svr supply voltage rejection v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos186c ? february 1997 ? revised august 2006 21 post office box 655303 ? dallas, texas 75265 tlv2264q and tlv2264m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2264q, tlv2264m tlv2264aq, tlv2264am unit parameter test conditions t a ? min typ max min typ max unit i dd supply current (four v o = 2.5 v, no load 25 c 0.8 1 0.8 1 ma i dd supply current (four amplifiers) v o = 2.5 v, no load full range 1 1 ma ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. tlv2264q and tlv2264m operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2264q, tlv2264m tlv2264aq, tlv2264am unit parameter test conditions t a ? min typ max min typ max unit 25 c 0.35 0.55 0.35 0.55 slew rate at unity v o = 0.5 v to 3.5 v, r l = 50 k ? ? , 25 c 0.35 0.55 0.35 0.55 sr slew rate at unity gain v o = 0.5 v to 3.5 v, c l = 100 pf ? r l = 50 k ? ? , full 0.25 0.25 v/ s sr gain c l = 100 pf ? full range 0.25 0.25 v/ s v n equivalent input f = 10 hz 25 c 40 40 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 12 12 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.3 1.3 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.017% 0.017% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 0.03% 0.03% gain-bandwidth f = 50 khz, r l = 50 k ? ? , 25 c 0.71 0.71 mhz gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.71 0.71 mhz b om maximum output-swing v o(pp) = 2 v, ? a v = 1, ? 25 c 185 185 khz b om output-swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 185 185 khz a v = ? 1, to 0.1% 6.4 6.4 t s settling time a v = ? 1, step = 0.5 v to 2.5 v, ? to 0.1% 25 c 6.4 6.4 s t s settling time step = 0.5 v to 2.5 v, r l = 50 k ? ? , ? to 0.01% 25 c 14.1 14.1 s r l = 50 k ? ? , c l = 100 pf ? to 0.01% 14.1 14.1 m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 56 56 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 11 11 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v
? slos186c ? february 1997 ? revised august 2006 22 post office box 655303 ? dallas, texas 75265 typical characteristics table of graphs figure v io input offset voltage distribution 2 ? 5 v io input offset voltage distribution vs common-mode voltage 2 ? 5 6, 7 vio input offset voltage temperature coefficient distribution 8 ? 11 i ib /i io input bias and input offset currents vs free-air temperature 12 v i input voltage vs supply voltage 13 v i input voltage vs supply voltage vs free-air temperature 13 14 v oh high-level output voltage vs high-level output current 15, 18 v ol low-level output voltage vs low-level output current 16, 17, 19 v o(pp) maximum peak-to-peak output voltage vs frequency 20 i os short-circuit output current vs supply voltage 21 i os short-circuit output current vs supply voltage vs free-air temperature 21 22 v id differential input voltage vs output voltage 23, 24 a vd differential voltage amplification vs load resistance 25 a vd large-signal differential voltage amplification vs frequency 26, 27 a vd large-signal differential voltage amplification vs frequency vs free-air temperature 26, 27 28, 29 z o output impedance vs frequency 30, 31 cmrr common-mode rejection ratio vs frequency 32 cmrr common-mode rejection ratio vs frequency vs free-air temperature 32 33 k svr supply-voltage rejection ratio vs frequency 34, 35 k svr supply-voltage rejection ratio vs frequency vs free-air temperature 34, 35 36, 37 i dd supply current vs free-air temperature 38, 39 sr slew rate vs load capacitance 40 sr slew rate vs load capacitance vs free-air temperature 40 41 v o inverting large-signal pulse response 42, 43 v o voltage-follower large-signal pulse response 44, 45 v o inverting small-signal pulse response 46, 47 v o voltage-follower small-signal pulse response 48, 49 v n equivalent input noise voltage vs frequency 50, 51 input noise voltage over a 10-second period 52 integrated noise voltage vs frequency 53 thd + n total harmonic distortion plus noise vs frequency 54 gain-bandwidth product vs supply voltage 55 gain-bandwidth product vs supply voltage vs free-air temperature 55 56 m phase margin vs frequency 26, 27 m phase margin vs frequency vs load capacitance 26, 27 57 gain margin vs load capacitance 58 b 1 unity-gain bandwidth vs load capacitance 59 overestimation of phase margin vs load capacitance 60
? slos186c ? february 1997 ? revised august 2006 23 post office box 655303 ? dallas, texas 75265 typical characteristics figure 2 9 6 3 0 precentage of amplifiers ? % 12 distribution of tlv2262 input offset voltage 15 v io ? input offset voltage ? mv ?1.6 ?0.8 0 0.8 1.6 841 amplifiers from 2 wafer lots v dd = 1.5 v t a = 25 c figure 3 9 6 3 0 precentage of amplifiers ? % 12 distribution of tlv2262 input offset voltage 15 v io ? input offset voltage ? mv ?1.6 ?0.8 0 0.8 1.6 841 amplifiers from 2 wafer lots v dd = 2.5 v t a = 25 c figure 4 12 8 4 0 percentage of amplifiers ? % 16 distribution of tlv2264 input offset voltage 20 ?1.6 ?0.8 0 0.8 1.6 2272 amplifiers from 2 wafer lots v dd = 1.5 v t a = 25 c v io ? input offset voltage ? mv figure 5 12 8 4 0 percentage of amplifiers ? % 16 distribution of tlv2264 input offset voltage 20 ?1.6 ?0.8 0 0.8 1.6 2272 amplifiers from 2 wafer lots v dd = 2.5 v t a = 25 c v io ? input offset voltage ? mv
? slos186c ? february 1997 ? revised august 2006 24 post office box 655303 ? dallas, texas 75265 typical characteristics figure 6 0 ? input offset voltage ? mv 0.5 input offset voltage ? vs common-mode input voltage 1 ?0.5 ?1 ?1 ?0.5 0 0.5 1 1.5 2 2.5 3 v dd = 3 v r s = 50 ? t a = 25 c ? t a = 25 c = 1.5 v p package t a = 25 c to 85 c vio ? temperature coefficient ? v/ c figure 9 distribution of tlv2262 input offset voltage temperature coefficient 15 10 5 0 percentage of amplifiers ? % 20 25 30 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 128 amplifiers from 2 wafer lots v dd = 2.5 v p package t a = 25 c to 85 c vio ? temperature coefficient ? v/ c ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 25 post office box 655303 ? dallas, texas 75265 typical characteristics figure 10 distribution of tlv2264 input offset voltage temperature coefficient percentage of amplifiers ? % 10 5 30 0 20 15 25 35 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 128 amplifiers from 2 wafer lots v dd = 1.5 v n package t a = 25 c to 125 c vio ? temperature coefficient of input offset voltage ? v/ c figure 11 distribution of tlv2264 input offset voltage temperature coefficient percentage of amplifiers ? % 10 5 30 0 20 15 25 35 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 128 amplifiers from 2 wafer lots v dd = 2.5 v n package t a = 25 c to 125 c vio ? temperature coefficient of input offset voltage ? v/ c figure 12 10 5 30 0 25 45 65 85 iib and iio ? input bias and input offset currents ? pa 20 15 25 input bias and input offset currents ? vs free-air temperature 35 105 125 i ib i io v dd = 2.5 v v ic = 0 v o = 0 r s = 50 ? t a ? free-air temperature ? c ? t a = 25 c | v io | 5 mv | ? supply voltage ? v ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices.
? slos186c ? february 1997 ? revised august 2006 26 post office box 655303 ? dallas, texas 75265 typical characteristics figure 14 2 1 0 ? input voltage ? v 3 4 input voltage ?? vs free-air temperature 5 ?1 ?55 ?35 ?15 5 25 45 65 85 | v io | 5 mv v dd = 5 v c 105 125 figure 15 ? high-level output voltage ? v high-level output voltage ?? vs high-level output current a 2 1 0.5 0 0 500 1000 3 3.5 4 1500 2000 2.5 1.5 t a = ? 55 c v dd = 3 v t a = 85 c t a = ? 40 c t a = 125 c t a = 25 c figure 16 0.6 0.4 0.2 0 0123 ? low-level output voltage ? v 0.8 1 low-level output voltage ? vs low-level output current 1.2 45 c v ic = 0 v ic = 0.75 v v ic = 1.5 v figure 17 ? low-level output voltage ? v low-level output voltage ?? vs low-level output current c t a = ? 40 c t a = 25 c v dd = 3 v v ic = 1.5 v t a = ? 55 c t a = 125 c i ol ? low-level output current ? ma ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 27 post office box 655303 ? dallas, texas 75265 typical characteristics figure 18 ? high-level output voltage ? v high-level output voltage ?? vs high-level output current a 3 2 1 0 0 500 1000 4 5 6 1500 2000 2500 3000 t a = 25 c t a = 85 c v dd = 5 v t a = ? 40 c t a = 125 c t a = ? 55 c figure 19 0.6 0.4 0.2 0 01 2 3 ? low-level output voltage ? v 1 1.2 low-level output voltage ?? vs low-level output current 1.4 456 0.8 v dd = 5 v v ic = 2.5 v t a = ? 40 c c t a = 25 c t a = 125 c t a = ? 55 c figure 20 4 2 1 5 3 ? maximum peak-to-peak output voltage ? v f ? frequency ? hz maximum peak-to-peak output voltage ? vs frequency 0 10 3 10 4 10 5 10 6 ? t a = 25 c v dd = 5 v v dd = 3 v figure 21 6 2 0 2345 ? short-circuit output current ? ma 8 10 short-circuit output current vs supply voltage 12 678 4 ?2 i os v dd ? supply voltage ? v v id = ? 100 mv v id = 100 mv v ic = v dd /2 t a = 25 c ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 28 post office box 655303 ? dallas, texas 75265 typical characteristics figure 22 ? short-circuit output current ? ma short-circuit output current ? vs free-air temperature i os t a ? free-air temperature ? c 4 2 6 10 12 8 0 ?4 ?50 ?25 0 25 50 75 100 ?2 v o = 2.5 v v dd = 5 v v id = ? 100 mv v id = 100 mv ?75 125 figure 23 0 800 0 0.5 1 1.5 ? differential input voltage ? 400 200 600 differential input voltage ? vs output voltage 1000 2 2.5 3 ?200 ?400 ?600 ?800 ?1000 v dd = 3 v r i = 50 k ? v ic = 1.5 v t a = 25 c v id v v o ? output voltage ? v figure 24 0 800 01 3 ? differential input voltage ? 400 200 600 differential input voltage ? vs output voltage 1000 245 ?200 ?400 ?600 ?800 ?1000 v id v v o ? output voltage ? v v dd = 5 v v ic = 2.5 v r l = 50 k ? t a = 25 c figure 25 differential voltage amplification ? vs load resistance r l ? load resistance ? k ? ? differential voltage amplification ? v/mv c 10 3 10 4 10 5 10 6 ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 29 post office box 655303 ? dallas, texas 75265 typical characteristics om ? phase margin m 20 f ? frequency ? hz 80 60 40 0 ?20 ?40 10 3 10 4 10 5 10 6 10 7 180 135 90 45 0 ?45 ?90 large-signal differential voltage amplification and phase margin ? vs frequency avd ? large-signal differential c figure 26 om ? phase margin m 20 f ? frequency ? hz large-signal differential voltage amplification and phase margin ? vs frequency 80 60 40 0 ?20 ?40 10 3 10 4 10 5 10 6 10 7 180 135 90 45 0 ?45 ?90 avd ? large-signal differential c figure 27 ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 30 post office box 655303 ? dallas, texas 75265 typical characteristics figure 28 10 100 large-signal differential voltage amplification ?? vs free-air temperature 1000 ?50 ?25 0 25 50 75 100 t a ? free-air temperature ? c ? large-signal differential voltage a vd amplification ? v/mv r l = 1 m ? r l = 50 k ? r l = 10 k ? v dd = 3 v v ic = 1.5 v v o = 0.5 v to 2.5 v 125 ?75 figure 29 10 100 large-signal differential voltage amplification ?? vs free-air temperature 1000 ?50 ?25 0 25 50 75 100 t a ? free-air temperature ? c ? large-signal differential voltage a vd amplification ? v/mv r l = 1 m ? 10000 125 ?75 r l = 50 k ? r l = 10 k ? v dd = 5 v v ic = 2.5 v v o = 1 v to 4 v figure 30 0.1 1 ? output impedance ? f? frequency ? hz output impedance ? vs frequency 10 100 1000 10 2 10 3 10 4 10 5 v dd = 3 v t a = 25 c a v = 100 a v = 10 a v = 1 ? z o figure 31 0.1 1 ? output impedance ? f? frequency ? hz output impedance ? vs frequency 10 100 1000 10 2 10 3 10 4 10 5 v dd = 5 v t a = 25 c a v = 100 a v = 10 a v = 1 ? z o ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 31 post office box 655303 ? dallas, texas 75265 typical characteristics figure 32 80 40 20 0 100 60 cmrr ? common-mode rejection ratio ? db f ? frequency ? hz common-mode rejection ratio ? vs frequency 10 1 10 2 10 3 10 4 10 5 10 6 v dd = 5 v v ic = 2.5 v v dd = 5 v v ic = 1.5 v t a = 25 c figure 33 80 78 74 72 70 88 76 cmmr ? common-mode rejection ratio ? db 84 82 86 common-mode rejection ratio ?? vs free-air temperature 90 ? 50 ? 25 0 25 50 75 100 t a ? free-air temperature ? c 125 ? 75 v dd = 5 v v dd = 3 v figure 34 60 40 20 100 ? supply-voltage rejection ratio ? db 80 f ? frequency ? hz supply-voltage rejection ratio ? vs frequency 0 ?20 k svr ? k svr + 10 1 10 2 10 3 10 4 10 5 10 6 c figure 35 60 40 20 100 ? supply-voltage rejection ratio ? db 80 f ? frequency ? hz supply-voltage rejection ratio ? vs frequency 0 ?20 k svr + 10 1 10 2 10 3 10 4 10 5 10 6 c ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 32 post office box 655303 ? dallas, texas 75265 typical characteristics figure 36 100 95 90 ? supply-voltage rejection ratio ? db 105 110 ?50 ?25 0 25 50 75 100 c v dd = 2.7 v to 8 v v ic = v o = v dd /2 125 ?75 tlv2262 supply-voltage rejection ratio ? vs free-air temperature figure 37 100 95 90 ? supply-voltage rejection ratio ? db 105 110 ?50 ?25 0 25 50 75 100 c v dd = 2.7 v to 8 v v ic = v o = v dd /2 125 ?75 tlv2264 supply-voltage rejection ratio ? vs free-air temperature figure 38 400 300 200 500 600 ?50 ?25 0 25 50 75 100 ? supply current ? a i dd t a ? free-air temperature ? c v dd = 5 v v o = 2.5 v v dd = 3 v v o = 1.5 v 125 ?75 tlv2262 supply current ?? vs free-air temperature figure 39 800 600 400 1000 1200 ?50 ?25 0 25 50 75 100 ? supply current ? a i dd t a ? free-air temperature ? c v dd = 5 v v o = 2.5 v v dd = 3 v v o = 1.5 v 125 ?75 tlv2264 supply current ?? vs free-air temperature ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 33 post office box 655303 ? dallas, texas 75265 typical characteristics figure 40 0.8 0.4 0.2 0 1 0.6 sr ? slew rate ? slew rate ? vs load capacitance sr ? sr + v dd = 5 v a v = ? 1 t a = 25 c 10 1 10 2 10 3 10 4 c l ? load capacitance ? pf s v/ figure 41 0.6 0.4 0.2 0 sr ? slew rate ? 0.8 1 slew rate ?? vs free-air temperature 1.2 ?50 ?25 0 25 50 75 100 sr ? sr + s v/ t a ? free-air temperature ? c v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 125 ?75 figure 42 1.5 1 0.5 0 024681012 ? output voltage ? v 2 2.5 inverting large-signal pulse response ? 3 14 16 18 20 v o t ? time ? s a v = ? 1 t a = 25 c v dd = 3 v r l = 50 k ? c l = 100 pf figure 43 2 1 0 024681012 3 4 5 14 16 18 20 inverting large-signal pulse response ? t ? time ? s ? output voltage ? v v o a v = ? 1 t a = 25 c v dd = 5 v r l = 50 k ? c l = 100 pf ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v. ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices.
? slos186c ? february 1997 ? revised august 2006 34 post office box 655303 ? dallas, texas 75265 typical characteristics figure 44 1.5 1 0.5 0 024 681012 2 2.5 voltage-follower large-signal pulse response ? 3 14 16 18 20 ? output voltage ? v v o t ? time ? s a v = ? 1 t a = 25 c v dd = 3 v r l = 50 k ? c l = 100 pf figure 45 2 1 0 024681012 3 4 5 14 16 18 20 voltage-follower large-signal pulse response ? ? output voltage ? v v o t ? time ? s v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c figure 46 0.7 0.65 0.9 0.6 0 2 4 6 8 10 12 0.8 0.75 0.85 inverting small-signal pulse response ? 0.95 14 16 18 20 v dd = 3 v r l = 50 k ? c l = 100 pf ? output voltage ? v v o t ? time ? s a v = ? 1 t a = 25 c figure 47 2.5 2.45 2.4 0 2 4 6 8 10 12 vo ? output voltage ? v 2.55 2.6 inverting small-signal pulse response ? 2.65 14 16 18 20 v o v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c t ? time ? s ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 35 post office box 655303 ? dallas, texas 75265 typical characteristics figure 48 0.8 0.75 0.7 024681012 0.85 0.9 voltage-follower small-signal pulse response ? 0.95 14 16 18 20 v dd = 3 v r l = 50 k ? c l = 100 pf vo ? output voltage ? v v o t ? time ? s a v = 1 t a = 25 c figure 49 2.5 2.45 2.4 0 2 4 6 8 10 12 2.55 2.6 voltage-follower small-signal pulse response ? 2.65 14 16 18 20 v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c vo ? output voltage ? v v o t ? time ? s figure 50 40 30 20 0 60 ? equivalent input noise voltage ? 50 f ? frequency ? hz equivalent input noise voltage ? vs frequency 10 10 1 10 2 10 3 10 4 v dd = 3 v r s = 20 ? t a = 25 c v n nv/ hz figure 51 40 30 20 0 60 ? equivalent input noise voltage ? 50 f ? frequency ? hz equivalent input noise voltage ? vs frequency 10 10 1 10 2 10 3 10 4 v dd = 5 v r s = 20 ? t a = 25 c v n nv/ hz ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 36 post office box 655303 ? dallas, texas 75265 typical characteristics figure 52 0 0246 input noise voltage ? nv 250 750 t ? time ? s input noise voltage over a 10-second period ? 1000 810 500 ?250 ?500 ?750 ?1000 v dd = 5 v f = 0.1 hz to 10 hz t a = 25 c figure 53 0.1 integrated noise voltage ? f ? frequency ? hz integrated noise voltage vs frequency 1 10 100 110 1 10 2 10 3 10 4 10 5 v calculated using ideal pass-band filter lower frequency = 1 hz t a = 25 c figure 54 thd + n ? total harmonic distortion plus noise ? % f ? frequency ? hz total harmonic distortion plus noise ? vs frequency 10 ?1 10 ?2 10 ?3 10 1 10 2 10 3 10 4 10 4 a v = 100 a v = 10 a v = 1 v dd = 5 v r l = 50 k ? t a = 25 c figure 55 gain-bandwidth product ? khz gain-bandwidth product vs supply voltage v dd ? supply voltage ? v 820 780 740 700 023 5 860 900 78 146 ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos186c ? february 1997 ? revised august 2006 37 post office box 655303 ? dallas, texas 75265 typical characteristics figure 56 gain-bandwidth product ? khz gain-bandwidth product ?? vs free-air temperature t a ? free-air temperature ? c 800 600 400 1000 1200 ?50 ?25 0 25 50 100 75 v dd = 5 v f = 10 khz c l = 100 pf ?75 125 figure 57 om ? phase margin phase margin vs load capacitance 10 10 2 10 3 10 4 c l ? load capacitance ? pf m 75 60 45 30 15 0 r null = 50 ? r null = 100 ? t a = 25 c r null = 20 ? r null = 10 ? 50 k ? 50 k ? v dd ? /gnd v dd + r null c l v i + ? r null = 0 figure 58 20 10 5 0 15 gain margin ? db gain margin vs load capacitance 10 10 2 10 3 10 4 c l ? load capacitance ? pf r null = 20 ? r l = 50 k ? a v = 1 t a = 25 c r null = 0 r null = 10 ? r null = 100 ? r null = 50 ? figure 59 600 400 200 ? unity-gain bandwidth ? khz 800 unity-gain bandwidth vs load capacitance 1000 10 10 2 10 3 10 4 c l ? load capacitance ? pf c ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v. ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices.
? slos186c ? february 1997 ? revised august 2006 38 post office box 655303 ? dallas, texas 75265 typical characteristics overestimation of phase margin overestimation of phase margin ? vs load capacitance c l ? load capacitance ? pf 10 8 6 4 2 0 10 10 2 10 3 10 4 r null = 100 ? r null = 50 ? r null = 20 ? 12 14 r null = 10 ? t a = 25 c ? see application information figure 60
? slos186c ? february 1997 ? revised august 2006 39 post office box 655303 ? dallas, texas 75265 application information driving large capacitive loads the tlv226x is designed to drive larger capacitive loads than most cmos operational amplifiers. figure 51 and figure 52 illustrate its ability to drive loads greater than 400 pf while maintaining good gain and phase margins (r null = 0). a smaller series resistor (r null ) at the output of the device (see figure 61) improves the gain and phase margins when driving large capacitive loads. figure 51 and figure 52 show the effects of adding series resistances of 10 ? , 20 ? , 50 ? , and 100 ? . the addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. the zero introduced to the transfer function is equal to the series resistance times the load capacitance. to calculate the improvement in phase margin, equation (1) can be used. ? m1  tan ?1  2 ugb w r null c l  ? m1  improvement in phase margin ugbw  unity-gain bandwidth frequency r null  output series resistance c l  load capacitance (1) where : the unity-gain bandwidth (ugbw) frequency decreases as the capacitive load increases (see figure 53). to use equation 1, ugbw must be approximated from figure 53. using equation 1 alone overestimates the improvement in phase margin as illustrated in figure 59. the overestimation is caused by the decrease in the frequency of the pole associated with the load, providing additional phase shift and reducing the overall improvement in phase margin. the pole associated with the load is reduced by the factor calculated in equation 2. f  1 1  g m r null f  factor reducing frequency of pole g m  small-signal output transconductance (typically 4.83 10 ?3 mhos) r null  output series resistance (2) where : for the tlv226x, the pole associated with the load is typically 7 mhz with 100-pf load capacitance. this value varies inversely with c l : at c l = 10 pf, use 70 mhz, at c l = 1000 pf, use 700 khz, and so on. reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. this results in an error in the increase in phase margin expected by considering the zero alone (equation 1). equation 3 approximates the reduction in phase margin due to the movement of the pole associated with the load. the result of this equation can be subtracted from the result of the equation 1 to better approximate the improvement in phase margin.
? slos186c ? february 1997 ? revised august 2006 40 post office box 655303 ? dallas, texas 75265 application information driving large capacitive loads (continued) ? m2  tan ?1    ugbw  f p 2    ? tan ?1  ugbw p 2  ? m2  reduction in phase margin ugbw  unity-gain bandwidth frequency f  factor from equation (2) p 2  unadjusted pole (70 mhz @ 10 pf, 7 mhz @ 100 pf, etc.) (3) where : using these equations with figure 60 and figure 61 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitive loads. 50 k ? 50 k ? v dd ? / gnd v dd + r null c l v i + ? figure 61. series-resistance circuit
? slos186c ? february 1997 ? revised august 2006 41 post office box 655303 ? dallas, texas 75265 application information macromodel information macromodel information provided was derived using microsim parts ? , the model generation software used with microsim pspice ? . the boyle macromodel (see note 5) and subcircuit in figure 62 are generated using the tlv226x typical electrical and operating characteristics at t a = 25 c. using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  maximum positive output voltage swing  maximum negative output voltage swing  slew rate  quiescent power dissipation  input bias current  open-loop voltage amplification  unity-gain frequency  common-mode rejection ratio  phase margin  dc output resistance  ac output resistance  short-circuit output current limit note 5: g. r. boyle, b. m. cohn, d. o. pederson, and j. e. solomon, ?macromodeling of intergrated circuit operational amplifiers ,? ieee journal of solid-state circuits, sc-9, 353 (1974). out + ? + ? + ? + ? + ? + ? + ? + ? + ? .subckt tlv226x 1 2 3 4 5 c1 11 12 5.5e?12 c2 6 7 20.00e?12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 43dx egnd 99 0 poly (2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly (5) vb vc ve vlp + vln 0 8.84e6 ?10e6 10e6 10e6 ?10e6 ga 6 0 11 12 62.83e?6 gcm 0 6 10 99 12.34e?9 iss 3 10 dc 11.05e?6 hlim 90 0 vlim 1k j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0e3 rd1 60 11 15.92e3 rd2 60 12 15.92e3 r01 8 5 135 r02 7 99 135 rp 3 4 15.87e3 rss 10 99 18.18e6 vad 60 4 ?.5 vb 9 0 dc 0 vc 3 53 dc .615 ve 54 4 dc .615 vlim 7 8 dc 0 vlp 91 0 dc 1 vln 0 92 dc 5.1 .model dx d (is=800.0e?18) .model jx pjf (is=500.0e?15 beta=325e?6 + vto=?.08) .ends v cc + rp in ? 2 in + 1 v cc ? vad rd1 11 j1 j2 10 rss iss 3 12 rd2 60 ve 54 de dp vc dc 4 c1 53 r2 6 9 egnd vb fb c2 gcm ga vlim 8 5 ro1 ro2 hlim 90 dlp 91 dln 92 vln vlp 99 7 figure 62. boyle macromodel and subcircuit pspice and parts are trademarks of microsim corporation.
packaging information orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish msl peak temp (3) 5962-9550401q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9550401qha active cfp u 10 1 tbd a42 snpb n / a for pkg type 5962-9550401qpa active cdip jg 8 1 tbd a42 snpb n / a for pkg type 5962-9550402q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9550402qca active cdip j 14 1 tbd a42 snpb n / a for pkg type 5962-9550402qda active cfp w 14 1 tbd a42 snpb n / a for pkg type 5962-9550403q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9550403qha active cfp u 10 1 tbd a42 snpb n / a for pkg type 5962-9550403qpa active cdip jg 8 1 tbd a42 snpb n / a for pkg type 5962-9550404q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9550404qca active cdip j 14 1 tbd a42 snpb n / a for pkg type 5962-9550404qda active cfp w 14 1 tbd a42 snpb n / a for pkg type tlv2262aid active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262aidg4 active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262aidr active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262aidrg4 active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262aip active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2262aipe4 active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2262aipw active tssop pw 8 150 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262aipwg4 active tssop pw 8 150 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262aipwle obsolete tssop pw 8 tbd call ti call ti tlv2262aipwr active tssop pw 8 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262aipwrg4 active tssop pw 8 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262amfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2262amjgb active cdip jg 8 1 tbd a42 snpb n / a for pkg type tlv2262amub active cfp u 10 1 tbd a42 snpb n / a for pkg type tlv2262aqd active soic d 8 75 tbd cu nipdau level-1-220c-unlim tlv2262aqdr active soic d 8 2500 tbd call ti call ti tlv2262id active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262idg4 active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262idr active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262idrg4 active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim package option addendum www.ti.com 6-dec-2006 addendum-page 1
orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish msl peak temp (3) tlv2262ip active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2262ipe4 active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2262ipw active tssop pw 8 150 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262ipwg4 active tssop pw 8 150 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262ipwr active tssop pw 8 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262ipwrg4 active tssop pw 8 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2262mfkb active lccc fk 20 1 tbd post-plate n / a for pkg type TLV2262MJGB active cdip jg 8 1 tbd a42 snpb n / a for pkg type tlv2262mub active cfp u 10 1 tbd a42 snpb n / a for pkg type tlv2262qd active soic d 8 75 tbd cu nipdau level-1-220c-unlim tlv2262qdr active soic d 8 2500 tbd call ti call ti tlv2264aid active soic d 14 50 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264aidg4 active soic d 14 50 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264aidr active soic d 14 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264aidrg4 active soic d 14 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264ain active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2264aine4 active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2264aipw active tssop pw 14 90 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264aipwg4 active tssop pw 14 90 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264aipwle obsolete tssop pw 14 tbd call ti call ti tlv2264aipwr active tssop pw 14 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264aipwrg4 active tssop pw 14 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264amfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2264amjb active cdip j 14 1 tbd a42 snpb n / a for pkg type tlv2264amwb active cfp w 14 1 tbd a42 snpb n / a for pkg type tlv2264aqd active soic d 14 50 tbd cu nipdau level-1-220c-unlim tlv2264aqdr active soic d 14 2500 tbd call ti call ti tlv2264id active soic d 14 50 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264idg4 active soic d 14 50 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264idr active soic d 14 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim package option addendum www.ti.com 6-dec-2006 addendum-page 2
orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish msl peak temp (3) tlv2264idrg4 active soic d 14 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264in active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2264ine4 active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2264ipwr active tssop pw 14 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264ipwrg4 active tssop pw 14 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2264mfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2264mj active cdip j 14 1 tbd a42 snpb n / a for pkg type tlv2264mjb active cdip j 14 1 tbd a42 snpb n / a for pkg type tlv2264mwb active cfp w 14 1 tbd a42 snpb n / a for pkg type tlv2264qd active soic d 14 50 tbd cu nipdau level-1-220c-unlim tlv2264qdr active soic d 14 2500 tbd call ti call ti (1) the marketing status values are defined as follows: active: product device recommended for new designs. lifebuy: ti has announced that the device will be discontinued, and a lifetime-buy period is in effect. nrnd: not recommended for new designs. device is in production to support existing customers, but ti does not recommend using this part in a new design. preview: device has been announced but is not in production. samples may or may not be available. obsolete: ti has discontinued the production of the device. (2) eco plan - the planned eco-friendly classification: pb-free (rohs), pb-free (rohs exempt), or green (rohs & no sb/br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. tbd: the pb-free/green conversion plan has not been defined. pb-free (rohs): ti's terms "lead-free" or "pb-free" mean semiconductor products that are compatible with the current rohs requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. where designed to be soldered at high temperatures, ti pb-free products are suitable for use in specified lead-free processes. pb-free (rohs exempt): this component has a rohs exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. the component is otherwise considered pb-free (rohs compatible) as defined above. green (rohs & no sb/br): ti defines "green" to mean pb-free (rohs compatible), and free of bromine (br) and antimony (sb) based flame retardants (br or sb do not exceed 0.1% by weight in homogeneous material) (3) msl, peak temp. -- the moisture sensitivity level rating according to the jedec industry standard classifications, and peak solder temperature. important information and disclaimer: the information provided on this page represents ti's knowledge and belief as of the date that it is provided. ti bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. efforts are underway to better integrate information from third parties. ti has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ti and ti suppliers consider certain information to be proprietary, and thus cas numbers and other limited information may not be available for release. in no event shall ti's liability arising out of such information exceed the total purchase price of the ti part(s) at issue in this document sold by ti to customer on an annual basis. package option addendum www.ti.com 6-dec-2006 addendum-page 3
mechanical data mcer001a january 1995 revised january 1997 post office box 655303 ? dallas, texas 75265 jg (r-gdip-t8) ceramic dual-in-line 0.310 (7,87) 0.290 (7,37) 0.014 (0,36) 0.008 (0,20) seating plane 4040107/c 08/96 5 4 0.065 (1,65) 0.045 (1,14) 8 1 0.020 (0,51) min 0.400 (10,16) 0.355 (9,00) 0.015 (0,38) 0.023 (0,58) 0.063 (1,60) 0.015 (0,38) 0.200 (5,08) max 0.130 (3,30) min 0.245 (6,22) 0.280 (7,11) 0.100 (2,54) 0 15 notes: a. all linear dimensions are in inches (millimeters). b. this drawing is subject to change without notice. c. this package can be hermetically sealed with a ceramic lid using glass frit. d. index point is provided on cap for terminal identification. e. falls within mil std 1835 gdip1-t8



mechanical data mlcc006b october 1996 post office box 655303 ? dallas, texas 75265 fk (s-cqcc-n**) leadless ceramic chip carrier 4040140 / d 10/96 28 terminal shown b 0.358 (9,09) max (11,63) 0.560 (14,22) 0.560 0.458 0.858 (21,8) 1.063 (27,0) (14,22) a no. of min max 0.358 0.660 0.761 0.458 0.342 (8,69) min (11,23) (16,26) 0.640 0.739 0.442 (9,09) (11,63) (16,76) 0.962 1.165 (23,83) 0.938 (28,99) 1.141 (24,43) (29,59) (19,32) (18,78) ** 20 28 52 44 68 84 0.020 (0,51) terminals 0.080 (2,03) 0.064 (1,63) (7,80) 0.307 (10,31) 0.406 (12,58) 0.495 (12,58) 0.495 (21,6) 0.850 (26,6) 1.047 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.035 (0,89) 0.010 (0,25) 12 13 14 15 16 18 17 11 10 8 9 7 5 4 3 2 0.020 (0,51) 0.010 (0,25) 6 1 28 26 27 19 21 b sq a sq 22 23 24 25 20 0.055 (1,40) 0.045 (1,14) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) notes: a. all linear dimensions are in inches (millimeters). b. this drawing is subject to change without notice. c. this package can be hermetically sealed with a metal lid. d. the terminals are gold plated. e. falls within jedec ms-004
mechanical data mpdi001a january 1995 revised june 1999 post office box 655303 ? dallas, texas 75265 p (r-pdip-t8) plastic dual-in-line 8 4 0.015 (0,38) gage plane 0.325 (8,26) 0.300 (7,62) 0.010 (0,25) nom max 0.430 (10,92) 4040082/d 05/98 0.200 (5,08) max 0.125 (3,18) min 5 0.355 (9,02) 0.020 (0,51) min 0.070 (1,78) max 0.240 (6,10) 0.260 (6,60) 0.400 (10,60) 1 0.015 (0,38) 0.021 (0,53) seating plane m 0.010 (0,25) 0.100 (2,54) notes: a. all linear dimensions are in inches (millimeters). b. this drawing is subject to change without notice. c. falls within jedec ms-001 for the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm



mechanical data mtss001c january 1995 revised february 1999 post office box 655303 ? dallas, texas 75265 pw (r-pdso-g**) plastic small-outline package 14 pins shown 0,65 m 0,10 0,10 0,25 0,50 0,75 0,15 nom gage plane 28 9,80 9,60 24 7,90 7,70 20 16 6,60 6,40 4040064/f 01/97 0,30 6,60 6,20 8 0,19 4,30 4,50 7 0,15 14 a 1 1,20 max 14 5,10 4,90 8 3,10 2,90 a max a min dim pins ** 0,05 4,90 5,10 seating plane 0 8 notes: a. all linear dimensions are in millimeters. b. this drawing is subject to change without notice. c. body dimensions do not include mold flash or protrusion not to exceed 0,15. d. falls within jedec mo-153
important notice texas instruments incorporated and its subsidiaries (ti) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. all products are sold subject to ti?s terms and conditions of sale supplied at the time of order acknowledgment. ti warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with ti?s standard warranty. testing and other quality control techniques are used to the extent ti deems necessary to support this warranty. except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. ti assumes no liability for applications assistance or customer product design. customers are responsible for their products and applications using ti components. to minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. ti does not warrant or represent that any license, either express or implied, is granted under any ti patent right, copyright, mask work right, or other ti intellectual property right relating to any combination, machine, or process in which ti products or services are used. information published by ti regarding third-party products or services does not constitute a license from ti to use such products or services or a warranty or endorsement thereof. use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ti under the patents or other intellectual property of ti. reproduction of information in ti data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. reproduction of this information with alteration is an unfair and deceptive business practice. ti is not responsible or liable for such altered documentation. resale of ti products or services with statements different from or beyond the parameters stated by ti for that product or service voids all express and any implied warranties for the associated ti product or service and is an unfair and deceptive business practice. ti is not responsible or liable for any such statements. following are urls where you can obtain information on other texas instruments products and application solutions: products applications amplifiers amplifier.ti.com audio www.ti.com/audio data converters dataconverter.ti.com automotive www.ti.com/automotive dsp dsp.ti.com broadband www.ti.com/broadband interface interface.ti.com digital control www.ti.com/digitalcontrol logic logic.ti.com military www.ti.com/military power mgmt power.ti.com optical networking www.ti.com/opticalnetwork microcontrollers microcontroller.ti.com security www.ti.com/security low power wireless www.ti.com/lpw telephony www.ti.com/telephony video & imaging www.ti.com/video wireless www.ti.com/wireless mailing address: texas instruments post office box 655303 dallas, texas 75265 copyright ? 2006, texas instruments incorporated


▲Up To Search▲   

 
Price & Availability of TLV2262MJGB

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X